PROJECT SCHEDULING

2016 DESIGN EXPO

Objectives

- Learn why schedules are needed
- Examples of various schedule templates
- Explore major components of a schedule
- Indentify the critical path
- Schedule updating
- Lessons learned

Why Are Schedules Needed?

- Provide a plan for what tasks are required and when those tasks should start and finish
- Live & dynamic Schedules record progress and reassess remaining work based on that progress
- Assists in recognizing and addressing factors potentially affecting project performance
- Ability to forecast gains or shortfalls in a project's progress

Schedule Templates

- Schedule templates are created by the Program Services Office in conjunction with area experts
- Schedule templates are developed to outline the process required for a particular phase <u>or</u> type of work, examples:
 - ▶ 3R / Resurfacing
 - Bridge Repair
 - Bridge Replacement
 - Sidewalks
 - Landscaping
 - Capacity

- Right of Way Acquisition
- PD&E Studies
- Design Build Low Bid
- Design Build Adjusted Score

Major Components of a Schedule

- > Activity ID
- Activity Name
- Original Duration

- Start Dates
- Finish Dates
- > Total Float

Activity ID			Activity Name	Original Duration		Finish	Late Start	Late Finish $ abla$	Total Float				
	428710-1 SR 5 (US 17) FROM DUVAL C/L TO I-95												
□ County: Nassau													
		11302000	Prepare PH II Plans	40	05-Feb-13 A	03-Apr-13	10-Apr-13	11-Apr-13	6				
		27101000	Request Geotechnical Information	1	02-Apr-13	02-Apr-13	11-Apr-13	11-Apr-13	7				
		90202000	SUBMIT PH II PLANS	1	04-Apr-13	04-Apr-13	12-Apr-13	12-Apr-13	6				
		28501000	PH.57 Railroad Encumbered	1	15-Apr-13*	15-Apr-13	15-Apr-13	15-Apr-13	0				
		19903000	Update LRE Quantities - PH II	5	02-Apr-13	08-Apr-13	17-Jul-13	23-Jul-13	76				

Activity ID

- ► The numbers used for the activity ID are based on a statewide standard list (where possible)
 - ► For example, AE 280 = Letting Date
- Enables clear communication statewide and within the district

Activity Name

- Activities encompass the major tasks required to complete a project. For example:
 - Prepare Phase II Plans
 - Utility Coordination I
 - Permit Submittal
 - Letting Date
- Generally, only major tasks and milestones are included in the project schedules

Durations

- Original Duration is the estimated amount of time it takes to start and finish a particular activity
- Based on a 5 day workweek (except for Construction)
 - ► For example, the original duration for AE 11302000 Prepare Phase II Plans is 40 days (roughly 2 months)

Start & Finish Dates

- Early Start / Finish
 - ▶ The earliest date an activity can start or finish
- Late Start / Finish
 - The latest date an activity can start or finish without negatively impacting a schedule constraint or project end date
- Actual Start / Finish
 - The actual date work began or ended on an activity; must be a past date
 - ▶ Denoted by the letter "A" in the schedule (05-Feb-13A)

Example Dates

Activity ID	Activity Name	Original Duration		Finish	Late Start	Late Finish	Total Float
25001000	Begin Work	1	01-Jul-13 A	01-Jul-13 A			
23201000	PH 32 Consultant Acquisition	130	02-Jul-13	30-Dec-13	12-Aug-13	07-Feb-14	29
23301000	PH 32 Contract Executed	1	10-Feb-14	10-Feb-14*	10-Feb-14	10-Feb-14	0
23401000	NTP	1	11-Feb-14	11-Feb-14	11-Feb-14	11-Feb-14	0

- The actual finish date for "Begin Work" is July 1, 2013
- The earliest start for "Consultant Acquisition" is July 2, 2013
 - Based on the predecessor finishing on July 1st, this activity <u>could</u> start as early as July 2nd.
- The <u>latest</u> start for "Consultant Acquisition" is August 12, 2013
 - Anything later than this date will negatively impact the contract execution which has been set for February 10th.

What is Total Float?

- Total float is the amount of time an activity can be delayed without impacting a constraint or the finish of the project (usually the letting date)
- Calculated as the difference between the late & early dates of the activity
 - Total float greater than 0 indicates schedule activities could be delayed without negatively impacting the project end date (Positive Float)
 - Total float less than 0 indicates that a project is behind schedule and the constraint or finish date is negatively impacted
 - (Negative Float)
 - Total float equal to 0 indicates that a project's early and late dates are the same and cannot be delayed (Zero Float)

Positive Float

- Positive float indicates that an activity is ahead of schedule and <u>could</u> be delayed, if needed
 - R/W certification can occur no later than 06/28/13 (late start) to make a 07/01/13 Plans to Specifications date. However, certification is scheduled to occur on 06/24/13 (early start), which is 4 workdays ahead of schedule

R/W Certified

Duration = 1 day

Early Start = 06/24/13

Late Start = 06/28/13

Total float = 4 days

Duration = 1 day

Must finish by 07/01/13

Early Start = 07/01/13

Late Start = 07/01/13

Total float = 0 days

Negative Float

- Negative float indicates that an activity is behind schedule
 - R/W certification can occur no later than 06/28/13 (late start) to make a 07/01/13 Plans to Specifications Date. However, R/W Certification is scheduled to occur on 07/05/13, which is 5 workdays behind schedule

R/W Certified

Duration = 1 day

Early Start = 07/05/13

Late Start = 06/28/13

Total float = -5 days

Duration = 1 day

Must finish by 07/01/13

Early Start = 07/01/13

Late Start = 07/01/13

Total float = 0 days

Zero Float

- Zero float indicates that an activity's early & late dates are the same
 - R/W certification can occur no later than 06/28/13 to make a 07/01/13 Plans to Specifications Date. R/W Certification is scheduled to occur on the latest date possible, 06/28/13 (0 days float).

R/W Certified

Duration = 1 day

Early Start = 06/28/13

Late Start = 06/28/13

Total float = 0 days

Duration = 1 day

Must finish by 07/01/13

Early Start = 07/01/13

Late Start = 07/01/13

Total float = 0 days

Logic

- In order for a schedule to be dynamic, logic is implemented to show the relationships between activities within a schedule
 - Predecessors are activities that occur <u>before</u> a particular activity
 - Successors are activities that occur <u>after</u> a particular activity
- Allows the schedule to adjust in response to activity progress

Example Logic

Prepare Ph | Plans Start = 07/01/2013 Finish = 08/01/2013 Float = 0

Submit Ph | Plans Start = 08/02/13 Finish = 08/02/13 Float = 0

Successor

Review Ph | Plans Start = 08/03/13 Finish = 08/02/13 Float = 0

Float = 0

- Activity "Prepare Phase I Plans" is a <u>predecessor</u> for "Submit Phase I Plans"
 - Phase I Plans must be prepared before they can be submitted
- Activity "Review Phase I Plans" is a <u>successor</u> for "Submit Phase I Plans"
 - Phase I Plans must be submitted before they can be reviewed

Example Logic

Predecessor

Prepare Ph I Plans
Start = 08/01/2013
Finish = 09/01/2013
Float = -21 days

Successor

Review Ph I Plans
Start = 09/02/13
Finish = 09/02/13
Float = -21 days

Float = -21 days

- Since these activities are "tied" together logically, any gain or delay affects other activities in this path
 - ► For example, if Prep Ph I Plans didn't actually start until 09/01/13 (1 month later than originally scheduled), all dates in the path would also be delayed in response
- ► For this reason, it is important to keep activities on schedule since delays affect others in the same path

3R Logic Template

3R Logic Template cont.

What is the Critical Path?

- The critical path is the <u>longest path</u> of activities to the end of the project
- Activity delays on the critical path directly impact the project completion date by lengthening the total project duration
- Examples of critical activities can include:
 - ▶ Plans Preparation
 - Utility Certification
 - Documents to R/W
 - R/W Certification
 - Letting Date

Critical Path Example

- This project's critical path is identified by the red bars
 - Path includes plans, utilities, plans processing, letting date
- Total float for the critical path = 0

Schedule Updating

- ▶ Who has heard of PSEE?
- Anybody ever get a negative float report?
- Schedules should be updated at least monthly through PSEE
- Why do those dates move around?
- Garbage in, garbage out! Schedules should always reflect the current status of a project

Getting Back on Schedule

How can a project get back on schedule if it falls behind (negative float)?

- Change the scope of work by removing tasks
 - ▶ For example, eliminating a phase submittal
- Decrease the duration of remaining activities
 - ▶ For example, reduce review time for plans
- Move out the end date / constraint of the project

Lessons Learned...

- Early and often
- Activities outside of your control
 - ▶ Geotech
 - Utilties
 - Right of Way
- Early identification of work

Most Important Thing To Remember About Schedules.....